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Abstract

Polymer electrolyte membrane fuel cells (PEMFCs) show great promise in portable, automotive, and stationary applications. They have reached
the test and demonstration phase in automotive and power markets today. This paper is focused on a stand-alone residential PEMFC power system
that provides the electricity needs of the house. A novel stochastic sizing methodology is developed that considers both fuel cell system dynamics
and residential load dynamics in overall system sizing for the stand-alone residential fuel cell power system. Understanding the nature of demand
side is critical in stand-alone system sizing. Thus, experimental measurements have been completed to capture the load side dynamics in detail.
No such data is found in the current literature. The Threshold Bootstrap method is used to model the residential load demand and to produce many
realistic load profiles. Matlab/Simulink is used to run system simulations to determine system sizes based on parameters defined through a designed
experiment. Comparison between the proposed sizing method and a possible worst case scenario sizing is given. The new sizing methodology can
be used together with sophisticated demand analysis programs to obtain customized sizing for each user as stand-alone power systems become

more viable.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fuel cells are electrochemical reactors which realize the
direct conversion of the chemical energy of the reactants to
electrical energy, with high efficiency and high environmental
compatibility [2]. Among the different types of fuel cells, ‘Poly-
mer Electrolyte Membrane Fuel Cells (PEMFCs)’ show great
promise in portable, automotive, and stationary applications
because of their high power density, low operating temperature,
zero pollutant emission and performance stability. They have a
solid proton conducting electrolyte, light weight, compactness,
short start-up time, and low cost. PEMFCs have reached the
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test and demonstration phase in automotive and power markets
today [21-25].

This paper is focused on a stand-alone residential PEMFC
power system that provides the electricity needs of a residen-
tial house. Although a fuel cell stack within the fuel cell system
can deliver the requested power instantaneously as long as the
required reactant flow rates are established, overall fuel cell
systems have a delay characteristics to a transient condition
in current demand [15-18]. The requested reactant flows for
an increase in the current demand cannot be provided instanta-
neously due to mechanical components in the system, such as
reformers and blowers. Thus, a backup source (such as a bat-
tery or supercapacitors) must be used to meet dynamic loads in
the stand-alone system. Due to the time-delayed response of the
fuel cell system, load dynamics become important in defining
the size of the backup energy storage.

Since most of the load transients in a typical house happen
on the order of cycles, high resolution load data is required for
proper sizing analysis. The data reported in earlier sizing studies
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were mostly based on hourly averaged values of load demand,
solar radiation and wind speed [8—10]. Thus, they do not provide
the necessary detail that is important in the case of a stand-
alone system. However, understanding the nature of residential
load demand is critical for the stand-alone system sizing. The
dynamics faced by the fuel cell system will be quite different
when a single house is considered compared to a collection of
houses. The importance of such dynamics is reported in [4-7].
However, no study has previously been completed for residential
load modeling with the level of detail considered in this study.

In addition, the random nature of the load needs to be
addressed in stand-alone system sizing. Thus, the sizing problem
turns into a probabilistic sizing problem for a single house. The
worst case scenario sizing used in the industry does not consider
these details and generally oversizes the system. In this study, a
novel approach is taken, i.e. both fuel cell system dynamics and
detailed load dynamics are taken into account.

This paper is organized as follows: In Section 2, the need
for high resolution load data and residential load modeling are
explained. In Section 3, the dynamic fuel cell system model is
given. In Section 4, a stochastic sizing methodology is intro-
duced. Comparison with a possible worst case scenario sizing is
given. In Section 5, conclusions are given.

2. Residential load modeling

When the grid is not present, details of the load profile become
important in stand-alone system operation and sizing study. With
a sizing study using hourly data, all information is lost within
the hour interval, as shown in Fig. 1. Since the fuel cell system
cannot respond instantly to an increase in current demand, these
dynamics are important and will have implications for backup
energy source size. The dynamic and random nature of the load
demand must be taken into account in the stand-alone system.
The importance of such dynamics is reported in Refs. [4-7].
However, no study has previously been completed for residential
load modeling with the level of detail considered in this study.
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Fig. 1. Hourly averaged load profile (flat line) and dynamic load profile.

A high resolution demand profile must be obtained for proper
sizing analysis. Therefore, experimental data have been col-
lected for a residential house in Troy, NY, USA to capture the
details of load dynamics. The data were taken in the winter and,
thus, it could be assumed as the worst loading condition for the
house. Current and voltage waveforms of the house are captured
with a sampling rate of 1000 points per second, which provides
us with a clear picture of residential load dynamics. No such
data could be found in the literature. The Yokogawa DL 750
measurement device is used to capture the waveforms [26]. A
24-hour time period is captured to obtain a daily cycle for the
house. The data is divided into hourly segments to make it easier
to work with. Also, one period in a 60 Hz signal is combined into
a single data point through averaging. This way data length is
reduced by approximately 1/16. Depending on the time constant
in fuel cell systems, one or more cycles can also be combined.

The collected data give us only one measured load profile. If
the start time of the data collection or the pattern of appliance
usage changed, one would not obtain the same time series. Due
to the random nature of load behavior, there could be different
loading patterns within the hour itself and most importantly each
hour’s data could result in a different backup size for given fuel
cell system parameters. A solution to this problem is to collect
more data for a longer time frame. However, obtaining more real
life data is not only time consuming but impractical and will not
cover all possibilities. Thus, a general methodology is needed
to produce many realistic load profiles based on real data for a
systematic analysis.

A statistical method, the Threshold Bootstrap (TB) [13,14],
is employed for this purpose. The residential load is considered
as a random process and the TB is used to convert a single sam-
ple into multiple realistic simulation input scenarios for system
simulations. Applications of the TB in scenario generation are
fully analyzed in Ref. [12]. In Refs. [11,12], producing simu-
lation inputs from one historical trace is considered. The first
formal visual inspection of bootstrap samples using the Turing
test is completed [11] and it has been concluded that bootstrap
samples are not visually distinguishable from real data. The TB
is a modified version of the conventional bootstrap [3]. Rather
than considering individual observations as in the conventional
bootstrap, the TB considers ‘cycles’ as the resampling units.
Considering a time series already obtained as in our case, the
TB method works as follows (Fig. 2):

(1) Choose a threshold level (usually the mean or median).
(2) Divide the series into cycles created by the threshold.

N A N A
o NN

e e e i e
Cycle 1 Cycle 2 Cycle3 Cycle4 Cycle5 Cycle6

Fig. 2. Determination of cycles for a given time series [12].



804 U.S. Selamogullar et al. / Journal of Power Sources 171 (2007) 802-810

(3) Create a bootstrap sample by concatenating cycles that are
randomly selected from the set of all cycles.

(4) Truncate the new sample when the original data length is
reached.

(5) Compute the statistic of interest from the bootstrap sample.

(6) Repeat 3-5 steps for new samples n times.

Limitations of the TB scenario generation could be given as

e The minimum and maximum of the produced data cannot
become smaller or larger than the minimum and maximum of
the original data.

e The produced data will not introduce new possibilities of
appliance usage; rather, it will change the time that they are
used.

Together, these points suggest that the TB will somewhat
underestimate the worst case scenario. The value of the TB is that
it augments a single sample time series by creating an unlimited
number of realistic alternative samples. It allows us to include
demand side dynamics in the sizing methodology for the first
time [1]. As can be seen from Figs. 3-5 , the TB is effectively
mimicking the actual data.
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The process of stand-alone residential load modeling will
always include an uncertainty due to random nature of the
load behavior. Our goal here is to identify the problem and to
give a possible solution. With increasing storage capacities and
electronic metering applications, the characterization of a stand-
alone house will be much easier in the future and more informed
decisions can be made for stand-alone systems.

3. Dynamic fuel cell system model

The principle of electricity generation from the PEMFC is
straightforward when the correct material properties, cell struc-
ture, and reactants (hydrogen and oxygen) are in place. The
fuel cell system transient response, however, is limited by air
flow, pressure regulation, heat, and water management [20]. As
stated earlier, the fuel cell stack in the fuel cell power system
will deliver the requested current as long as the necessary reac-
tant flows that correspond to the required current are maintained.
The down transients in current demand could be supplied with-
out any delay since the reactant flows are already established for
the higher power demand earlier. However, the up-transients in
current demand will require a time delay. The chemical reaction
within the fuel cell stack is extremely fast and can be assumed
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Fig. 3. Bootstrap data and actual data from 21:30 to 22:30 Actual data are shown on the top left.
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Fig. 4. Bootstrap data and actual data from 18:30 to 19:30 Actual data are shown on the top left.

instantaneous [20]. During a transient in current demand (espe-
cially an increase), both hydrogen and oxygen flow rates must
be increased since the flows are directly related to the desired
current. However, this cannot be completed without time delays
due to the reformer, compressor or blower time constants in
the mechanical systems. This is important in load-following
applications, such as the stand-alone residential fuel cell system
where load fluctuations are frequent. The time delay charac-
teristics of the system have implications for overall system
sizing.

A first-order time delay approximation is used to model the
fuel cell system response to transients. In the literature, first-
order time delay approximations for the fuel cell system are
reported in several papers [15-18]. The assumption is verified
using the experimental result for a real fuel cell system reported
in Ref. [19]. The data given in Ref. [19] shows the response
of the fuel flow to a step change in its control. The fuel cell
flow rate is directly proportional to the current (Hp, , = I/2F).
The experimental data and the first-order approximation results
are plotted together to compare our first-order assumption with
the real life data (Fig. 6). As can be seen, the first-order delay
approximation closely follows the experimental data.

In the system sizing methodology, different power levels need
to be considered. Therefore, a simple yet sufficiently accurate
model of the fuel cell system is needed for fast simulation. The
first-order delay assumption in the fuel cell system dynamic
response offers this flexibility while not losing the necessary
dynamics for the system simulations.

4. Stochastic sizing methodology for the stand-alone
residential fuel cell power system

Both load dynamics and fuel cell system dynamics are taken
into consideration in the following methodology, which has been
used to determine the size of backup for a house with a given load
profile, fuel cell system maximum power, and fuel cell system
time constant.

e The residential load data is considered to be a random process
and the Threshold Bootstrap (TB) method is used to produce
multiple input scenarios based on the actual data for system
simulations.

e The fuel cell system time constant, fuel cell system maximum
output power, and backup size are considered to be our design
parameters (T, Peellmax, Ebackup). Minitab statistical software
is used to develop a Box-Behnken response surface exper-
imental design for three design parameters. Fifteen design
points are obtained.

e System simulations are run for each design point with 250 new
load profiles obtained using the TB. The block diagram of the
simulation is shown in Fig. 7. The difference between fuel
cell system output power and load power defines the power
drawn from the backup and used to calculate the backup state
of the charge (SOC).

e The SOC is used to define the reference power ( Pf) that will
drive the dynamic fuel cell system model (Eq. (1)). SOCjimit
is the minimum SOC allowed before charging starts. It is a
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Fig. 5. Bootstrap data and actual data from 14:30 to 15:30 Actual data are shown on the top left.
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Fig. 6. Verification of the first-order delay assumption with experimental data
[19].

user defined parameter and taken as 40% in our study.

Pret=

Pioad if SOC =1, x=0, discharge
Pioad if SOCjimit < SOC<1, x=0, discharge
Peellmax 1 SOCjimit < SOC<1, x=1, charge
Peelimax  if SOC < SOCjimit» x=1, charge

ey

e Average state of the charge (SOC,y) is recorded at each
design point. Thus, a matrix with 1 x 250 dimension is
obtained for every design point.

e The probability of SOCyy. staying bigger than a user-selected
threshold value SOCy, (p(SOCyyve > SOCy,)) is calculated

Dynamic Fuel Cell| State of the Charge| Reference Power

Calculation Calculation

i

Load Power

Fig. 7. Block diagram for system simulations.
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Table 1

Design parameters

Peettmax (W) 1500-2500

7(s) 1-15

Ebackup (D 3 x 105 —1x 106

from simulation results and used as the response column in
Minitab Design of Experiments (DOE) analysis. The relation-
ship between the response (p(SOCyye > SOCy,)) and design
parameters (Peelimax, T» Ebackup) are found. Contour plot is
used to select both backup energy source size and fuel cell
system size.

e New 250 load profiles are produced using the TB in order to
check the selected sizes. Simulations are run for the selected
points to check if the condition for the selection is satisfied.

e The backup size found through new sizing methodology is
compared with a possible worst case scenario sizing. The
worst case scenario is obtained by superimposing the exper-
imental measurement of individual appliances voltage and
current waveforms.

4.1. Results

The three design parameters and their ranges used in the
Minitab software are given in Table 1. Average state of the
charge for each load profile at each design point is recorded for
high load hours (14:30-18:30-20:30-21:30) for the considered
house. The SOCy,is chosen to be 60%. Therefore, the response is
given as p(SOCyye > 0.60). The low load hours are not included
in the analysis since during those hours, the SOC does not devi-
ate much from the target value of 100% for any design points
considered.

The relationship between the response (p(SOCyye > 0.60))
and design parameters (Peelimax, T» Ebackup) are found using
Minitab. The model obtained through Minitab analysis has a
R —Sq =989% and R — Sq(adj) = 97% which means that
97% of the variations in the data can be explained by the
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Fig. 8. Actual response vs. fitted data.
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Fig. 9. Peelimax VS. Evackup for a fixed 7.

model. The plot of response versus fitted values is given in
Fig. 8.

Minitab also provides contour plots to visualize the relation-
ships. The contour plots provides visual reference about the
effect of two design parameters on the response variable while
one of the design parameters is kept constant. The relationship
between Epackup and Peelimax for a fixed time constant is shown
in Fig. 9.

The curves in Fig. 9 show different probability lines to meet
the load demand. Failure to meet load demand probabilities can
also be obtained from these curves as a function of both Peejimax
and Epackup- As an example, a point chosen from 92% probability
line means at least 92% of the time (out of 1000 simulated cases)
SOC,ye will be bigger than 60%. Hourly simulation results are
used to decide whether the selection criteria is satisfied or not.
The criteria to meet the load demand defined as the probability
of average state of the charge staying bigger than 60% for each
high load hours. The failure to meet demand probabilities can be
obtained by subtracting the probability of meeting the demand
values from 100%. When a point from 92% probability line is
chosen, then corresponding Peelimax and Epackup values will 8%
of the time fail to meet demand.

The sizing curves in Fig. 9 can also be used for tradeoff anal-
ysis in cost saving versus penalty since they provide information
about both costs (indirectly) and failure probability. As an exam-
ple, although point 1 has a lower system cost compared to point
2, it has higher failure probability compared to point 2.

This plot is used to select fuel cell system power (Peellmax)
and backup size (Epackup) for points 1-9 shown in Fig. 9. Points
1, 4, and 7 are selected from 72% probability line; points 2, 5,
and 8 are selected from 82% probability line; and points 3, 6,
and 9 are selected from 92% probability line. Corresponding
Peelimax and Epyckup Values for each point are given in Table 2.

Once sizes are selected for each point using the sizin curves
inFig. 9, system simulations are run for validation purposes with
250 new scenarios obtained using the TB. Obtained probability
values are summarized in Fig. 10. As can be seen, the probability
to meet the load demand criteria is satisfied for all chosen points.

Failure to meet load demand probabilities for different
backup sizes using the results of simulated cases for points 1-9
are shown in Fig. 11.

It should be noted that the selected Peelimax and Epackup Val-
ues are only a starting point and might not satisfy the selection
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Table 2
Peelimax and Evpackup Values for the selected points shown in Fig. 9
Points 1 2 3 4 5 6 7 8 9
Peelimax (W) 1,533 1,647 1,794 1,594 1,715 1,857 1,666 1,782 1,936
Epackup (J) 800,000 800,000 800,000 600,000 600,000 600,000 400,000 400,000 400,000
110 vidual appliance profiles. The considered appliances, that are
100 4 937 958 98 . . .
885 885 o° it commonly seen in a residential house, are
£ 07 83 95 a0
z 8 [ F——
'?33 1 |Z |2 |z PR Z|2|% . OYen and oven-top
2 60 1 2 [& & 2 | & | & 2|8 & e Microwave
3 oo o« TV
g i e Living room lights
8 201 e Garage door opener
105 e Refrigerator
0 . :
p(SOCave>0.6)-72% line  p(SOCave>0.6)-82% line  p(SOCave>0.6)-92% line e Vacuum cleaner
Point Pcellmax Ebackup Point Pcellmax Ebackup Point Pcelmax Ebackup [ ) Dryer
1 1533 800000 2 1647 800000 3 1794 800000 Washi hi
4 1504 600000 5 1715 600000 6 1857 600000 e Washing machine
7 1666 400000 8 1782 400000 9 1936 400000 e Toaster
' ' ' e Dishwasher

Fig. 10. Obtained probabilities to meet the load demand (p(SOCaye > 0.60))
for the selected points (1-9) through simulations.

criteria. Since the problem is stochastic in nature, the results
obtained will not be the exact answer. The results from the DOE
can be used as a starting point for a final solution. The DOE
reduces the search space for the solution since the analysis gives
us an estimate of where the solution could be for different design
parameters. Then, a more refined local search can be used to
reach a final solution.

4.2. Comparison with a worst case scenario sizing

In order to compare the results of the sizing method intro-
duced here with the worst case sizing, a possible worst case
for the considered house is obtained by superimposing the indi-

25 T T T

—&— Ebackup 800000 J
—+— Ebackup 600000 J

201 -
154

Probability of Failure to Meet Demand (%)

O i i i i
1500 1600 1700 1800 1900 2000
Pcellmax (W)

Fig. 11. Probability of failure to meet demand vs. Peejimax for different backup
sizes using the results of simulated cases for points 1-9.

Each appliances current and voltage waveforms are mea-
sured experimentally using the DL 750. The rms values of
both current and voltage waveforms are used to calculate power
requirements. The dishwasher cycle was the longest among all
the appliances. Therefore, its running time is considered as the
stopping time. The superimposed load profile is shown in Fig. 12.

During the first minutes of the cycle, the power require-
ment is quite high since all the appliances mentioned above are
being used. However, the power requirement goes down as time
progress since some of the appliances are off one by one. For
example, the refrigerator is on with its periodic on and off times
for the duration of the cycle while the garage door opener is
operating only once at the beginning of the cycle. TV and living
room lights are on for the duration of the cycle as well. Washing
machine and dryer are used for one loading. Microwave is oper-
ated to heat up a dinner plate while vacuum cleaner and toaster
are operated approximately 5 min. Oven was on for the duration
of the cycle while oven-top was on for half of the cycle.
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Fig. 12. A possible worst case loading scenario for the considered house.
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Table 3
Comparison of the required energy backup values for the worst case sizing and
the proposed sizing method for selected points 1-9

Points Peelimax (KW) Proposed method Worst case
Ebackup (kWh) Ebackup (kWh)
1 1532 0.222 2.972
2 1647 0.222 2.861
3 1794 0.222 2.694
4 1594 0.167 2916
5 1715 0.167 2.777
6 1857 0.167 2.638
7 1666 0.111 2.833
8 1782 0.111 2.722
9 1936 0.111 2.527

The required energy backup for this worst loading case is cal-
culated using the obtained worst case load profile as the input
to our system simulation. For the same parameter values of
selected points (Table 2), the required backup values to keep
the SOC,eabove 60% are given in Table 3.

The results confirm our expectation that the worst case sce-
nario sizing is dramatically oversizing the required backup for
given fuel cell parameters. They also confirm the importance of
both fuel cell systems dynamics and load dynamics in stand-
alone power systems sizing.

5. Conclusions

A stand-alone residential fuel cell power system sizing is
investigated in this study. A stochastic sizing methodology is
introduced. Both load dynamics and fuel cell system dynam-
ics are considered, as has not been done in the literature. The
load side dynamics are captured in detail experimentally. The
measured data, then, are used as basis for the Threshold Boot-
strap to produce many realistic load profiles for a systematic
sizing study. When the dynamics are considered, the required
backup size is considerably reduced compared to typical worst
case scenario sizing.

Since the sizing problem is stochastic in nature, the results
obtained here will not be the exact answer. The methodology
used cannot guarantee 100% coverage since it is impossible to do
so. The randomness of the data profile and the path dependence
of the sizing problem make it difficult to generalize the sizing
methodology. However, the results from the DOE can be used as
a starting point for a sizing solution. The DOE reduces the search
space for the solution since the analysis gives us an estimate
of where the solution could be for different design parameters.
Then, a more refined local search can be used to find the final
solution.

The sizing methodology given in this study could be used
by setting other reliability standards, such as minimizing the
total time of failure to meet the demand, for example 5 min total
time of failure to meet demand out of 24 h. Total time of failure
can be determined using the backup state of the charge. The
duration that the state of the charge staying lower than a user-
selected lower limit, such as 30% will provide the failure time.
The summation of these durations will provide the total time of

failure. Then, the total time of failure or its probability can be
used as response variable in the DOE analysis and new sizing
curves can be obtained.

Since 100% coverage cannot be guaranteed in the stand-alone
operation without an overdesign as in the worst case scenario
sizing, a load management algorithm to prevent a failure (no
electricity) should be implemented in such a way that if the load
is already at the limit of the system, the user could not start any
other appliance or some of the loads could be taken out from
the system. The requested demand could be satisfied at a later
time. These preventive measures could be easily integrated into
old buildings as well.

Cost is not considered in this study since the size and the cost
relationship is linear in the stand-alone operation. The total cost
of the system is the combination of both fuel cell system cost
and backup energy source cost. Thus, any decrease in either fuel
cell system size or backup size will lower the total cost. Under
present economics, the fuel cell system is the most expensive
part in overall system cost.

The sizing methodology given here can be used together
with sophisticated demand analysis programs to compute a cus-
tomized sizing for each user as the renewable energy sources
becomes more affordable and more modular in the future.
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