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bstract

Polymer electrolyte membrane fuel cells (PEMFCs) show great promise in portable, automotive, and stationary applications. They have reached
he test and demonstration phase in automotive and power markets today. This paper is focused on a stand-alone residential PEMFC power system
hat provides the electricity needs of the house. A novel stochastic sizing methodology is developed that considers both fuel cell system dynamics
nd residential load dynamics in overall system sizing for the stand-alone residential fuel cell power system. Understanding the nature of demand
ide is critical in stand-alone system sizing. Thus, experimental measurements have been completed to capture the load side dynamics in detail.
o such data is found in the current literature. The Threshold Bootstrap method is used to model the residential load demand and to produce many

ealistic load profiles. Matlab/Simulink is used to run system simulations to determine system sizes based on parameters defined through a designed

xperiment. Comparison between the proposed sizing method and a possible worst case scenario sizing is given. The new sizing methodology can
e used together with sophisticated demand analysis programs to obtain customized sizing for each user as stand-alone power systems become
ore viable.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Fuel cells are electrochemical reactors which realize the
irect conversion of the chemical energy of the reactants to
lectrical energy, with high efficiency and high environmental
ompatibility [2]. Among the different types of fuel cells, ‘Poly-
er Electrolyte Membrane Fuel Cells (PEMFCs)’ show great

romise in portable, automotive, and stationary applications
ecause of their high power density, low operating temperature,

ero pollutant emission and performance stability. They have a
olid proton conducting electrolyte, light weight, compactness,
hort start-up time, and low cost. PEMFCs have reached the
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est and demonstration phase in automotive and power markets
oday [21–25].

This paper is focused on a stand-alone residential PEMFC
ower system that provides the electricity needs of a residen-
ial house. Although a fuel cell stack within the fuel cell system
an deliver the requested power instantaneously as long as the
equired reactant flow rates are established, overall fuel cell
ystems have a delay characteristics to a transient condition
n current demand [15–18]. The requested reactant flows for
n increase in the current demand cannot be provided instanta-
eously due to mechanical components in the system, such as
eformers and blowers. Thus, a backup source (such as a bat-
ery or supercapacitors) must be used to meet dynamic loads in
he stand-alone system. Due to the time-delayed response of the
uel cell system, load dynamics become important in defining

he size of the backup energy storage.

Since most of the load transients in a typical house happen
n the order of cycles, high resolution load data is required for
roper sizing analysis. The data reported in earlier sizing studies
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ere mostly based on hourly averaged values of load demand,
olar radiation and wind speed [8–10]. Thus, they do not provide
he necessary detail that is important in the case of a stand-
lone system. However, understanding the nature of residential
oad demand is critical for the stand-alone system sizing. The
ynamics faced by the fuel cell system will be quite different
hen a single house is considered compared to a collection of
ouses. The importance of such dynamics is reported in [4–7].
owever, no study has previously been completed for residential

oad modeling with the level of detail considered in this study.
In addition, the random nature of the load needs to be

ddressed in stand-alone system sizing. Thus, the sizing problem
urns into a probabilistic sizing problem for a single house. The
orst case scenario sizing used in the industry does not consider

hese details and generally oversizes the system. In this study, a
ovel approach is taken, i.e. both fuel cell system dynamics and
etailed load dynamics are taken into account.

This paper is organized as follows: In Section 2, the need
or high resolution load data and residential load modeling are
xplained. In Section 3, the dynamic fuel cell system model is
iven. In Section 4, a stochastic sizing methodology is intro-
uced. Comparison with a possible worst case scenario sizing is
iven. In Section 5, conclusions are given.

. Residential load modeling

When the grid is not present, details of the load profile become
mportant in stand-alone system operation and sizing study. With
sizing study using hourly data, all information is lost within

he hour interval, as shown in Fig. 1. Since the fuel cell system
annot respond instantly to an increase in current demand, these
ynamics are important and will have implications for backup
nergy source size. The dynamic and random nature of the load
emand must be taken into account in the stand-alone system.

he importance of such dynamics is reported in Refs. [4–7].
owever, no study has previously been completed for residential

oad modeling with the level of detail considered in this study.

Fig. 1. Hourly averaged load profile (flat line) and dynamic load profile.
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A high resolution demand profile must be obtained for proper
izing analysis. Therefore, experimental data have been col-
ected for a residential house in Troy, NY, USA to capture the
etails of load dynamics. The data were taken in the winter and,
hus, it could be assumed as the worst loading condition for the
ouse. Current and voltage waveforms of the house are captured
ith a sampling rate of 1000 points per second, which provides
s with a clear picture of residential load dynamics. No such
ata could be found in the literature. The Yokogawa DL 750
easurement device is used to capture the waveforms [26]. A

4-hour time period is captured to obtain a daily cycle for the
ouse. The data is divided into hourly segments to make it easier
o work with. Also, one period in a 60 Hz signal is combined into
single data point through averaging. This way data length is

educed by approximately 1/16. Depending on the time constant
n fuel cell systems, one or more cycles can also be combined.

The collected data give us only one measured load profile. If
he start time of the data collection or the pattern of appliance
sage changed, one would not obtain the same time series. Due
o the random nature of load behavior, there could be different
oading patterns within the hour itself and most importantly each
our’s data could result in a different backup size for given fuel
ell system parameters. A solution to this problem is to collect
ore data for a longer time frame. However, obtaining more real

ife data is not only time consuming but impractical and will not
over all possibilities. Thus, a general methodology is needed
o produce many realistic load profiles based on real data for a
ystematic analysis.

A statistical method, the Threshold Bootstrap (TB) [13,14],
s employed for this purpose. The residential load is considered
s a random process and the TB is used to convert a single sam-
le into multiple realistic simulation input scenarios for system
imulations. Applications of the TB in scenario generation are
ully analyzed in Ref. [12]. In Refs. [11,12], producing simu-
ation inputs from one historical trace is considered. The first
ormal visual inspection of bootstrap samples using the Turing
est is completed [11] and it has been concluded that bootstrap
amples are not visually distinguishable from real data. The TB
s a modified version of the conventional bootstrap [3]. Rather
han considering individual observations as in the conventional
ootstrap, the TB considers ‘cycles’ as the resampling units.
onsidering a time series already obtained as in our case, the
B method works as follows (Fig. 2):
1) Choose a threshold level (usually the mean or median).
2) Divide the series into cycles created by the threshold.

Fig. 2. Determination of cycles for a given time series [12].
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3) Create a bootstrap sample by concatenating cycles that are
randomly selected from the set of all cycles.

4) Truncate the new sample when the original data length is
reached.

5) Compute the statistic of interest from the bootstrap sample.
6) Repeat 3–5 steps for new samples n times.

Limitations of the TB scenario generation could be given as

The minimum and maximum of the produced data cannot
become smaller or larger than the minimum and maximum of
the original data.
The produced data will not introduce new possibilities of
appliance usage; rather, it will change the time that they are
used.

Together, these points suggest that the TB will somewhat
nderestimate the worst case scenario. The value of the TB is that
t augments a single sample time series by creating an unlimited

umber of realistic alternative samples. It allows us to include
emand side dynamics in the sizing methodology for the first
ime [1]. As can be seen from Figs. 3–5 , the TB is effectively

imicking the actual data.

o
t
c
w

Fig. 3. Bootstrap data and actual data from 21:30 to
wer Sources 171 (2007) 802–810

The process of stand-alone residential load modeling will
lways include an uncertainty due to random nature of the
oad behavior. Our goal here is to identify the problem and to
ive a possible solution. With increasing storage capacities and
lectronic metering applications, the characterization of a stand-
lone house will be much easier in the future and more informed
ecisions can be made for stand-alone systems.

. Dynamic fuel cell system model

The principle of electricity generation from the PEMFC is
traightforward when the correct material properties, cell struc-
ure, and reactants (hydrogen and oxygen) are in place. The
uel cell system transient response, however, is limited by air
ow, pressure regulation, heat, and water management [20]. As
tated earlier, the fuel cell stack in the fuel cell power system
ill deliver the requested current as long as the necessary reac-

ant flows that correspond to the required current are maintained.
he down transients in current demand could be supplied with-

ut any delay since the reactant flows are already established for
he higher power demand earlier. However, the up-transients in
urrent demand will require a time delay. The chemical reaction
ithin the fuel cell stack is extremely fast and can be assumed

22:30 Actual data are shown on the top left.
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Fig. 4. Bootstrap data and actual data from 18

nstantaneous [20]. During a transient in current demand (espe-
ially an increase), both hydrogen and oxygen flow rates must
e increased since the flows are directly related to the desired
urrent. However, this cannot be completed without time delays
ue to the reformer, compressor or blower time constants in
he mechanical systems. This is important in load-following
pplications, such as the stand-alone residential fuel cell system
here load fluctuations are frequent. The time delay charac-

eristics of the system have implications for overall system
izing.

A first-order time delay approximation is used to model the
uel cell system response to transients. In the literature, first-
rder time delay approximations for the fuel cell system are
eported in several papers [15–18]. The assumption is verified
sing the experimental result for a real fuel cell system reported
n Ref. [19]. The data given in Ref. [19] shows the response
f the fuel flow to a step change in its control. The fuel cell
ow rate is directly proportional to the current (H2flow = I/2F ).
he experimental data and the first-order approximation results
re plotted together to compare our first-order assumption with
he real life data (Fig. 6). As can be seen, the first-order delay
pproximation closely follows the experimental data.

In the system sizing methodology, different power levels need
o be considered. Therefore, a simple yet sufficiently accurate
odel of the fuel cell system is needed for fast simulation. The
rst-order delay assumption in the fuel cell system dynamic
esponse offers this flexibility while not losing the necessary
ynamics for the system simulations.

•

19:30 Actual data are shown on the top left.

. Stochastic sizing methodology for the stand-alone
esidential fuel cell power system

Both load dynamics and fuel cell system dynamics are taken
nto consideration in the following methodology, which has been
sed to determine the size of backup for a house with a given load
rofile, fuel cell system maximum power, and fuel cell system
ime constant.

The residential load data is considered to be a random process
and the Threshold Bootstrap (TB) method is used to produce
multiple input scenarios based on the actual data for system
simulations.
The fuel cell system time constant, fuel cell system maximum
output power, and backup size are considered to be our design
parameters (τ, Pcellmax, Ebackup). Minitab statistical software
is used to develop a Box-Behnken response surface exper-
imental design for three design parameters. Fifteen design
points are obtained.
System simulations are run for each design point with 250 new
load profiles obtained using the TB. The block diagram of the
simulation is shown in Fig. 7. The difference between fuel
cell system output power and load power defines the power
drawn from the backup and used to calculate the backup state

of the charge (SOC).
The SOC is used to define the reference power (Pref) that will
drive the dynamic fuel cell system model (Eq. (1)). SOClimit
is the minimum SOC allowed before charging starts. It is a
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Fig. 5. Bootstrap data and actual data from 14:30 to

Fig. 6. Verification of the first-order delay assumption with experimental data
[19].

•

•

15:30 Actual data are shown on the top left.

user defined parameter and taken as 40% in our study.

Pref=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pload if SOC = 1, x=0, discharge

Pload if SOClimit < SOC<1, x=0, discharge

Pcellmax if SOClimit ≤ SOC<1, x=1, charge

Pcellmax if SOC < SOClimit, x=1, charge
(1)

Average state of the charge (SOCave) is recorded at each

design point. Thus, a matrix with 1 × 250 dimension is
obtained for every design point.
The probability of SOCave staying bigger than a user-selected
threshold value SOCth (p(SOCave > SOCth)) is calculated

Fig. 7. Block diagram for system simulations.
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Table 1
Design parameters

Pcellmax (W) 1500–2500
τ
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(s) 1–15

backup (J) 3 × 105 − 1 × 106

from simulation results and used as the response column in
Minitab Design of Experiments (DOE) analysis. The relation-
ship between the response (p(SOCave > SOCth)) and design
parameters (Pcellmax, τ, Ebackup) are found. Contour plot is
used to select both backup energy source size and fuel cell
system size.
New 250 load profiles are produced using the TB in order to
check the selected sizes. Simulations are run for the selected
points to check if the condition for the selection is satisfied.
The backup size found through new sizing methodology is
compared with a possible worst case scenario sizing. The
worst case scenario is obtained by superimposing the exper-
imental measurement of individual appliances voltage and
current waveforms.

.1. Results

The three design parameters and their ranges used in the
initab software are given in Table 1. Average state of the

harge for each load profile at each design point is recorded for
igh load hours (14:30–18:30–20:30–21:30) for the considered
ouse. The SOCthis chosen to be 60%. Therefore, the response is
iven as p(SOCave > 0.60). The low load hours are not included
n the analysis since during those hours, the SOC does not devi-
te much from the target value of 100% for any design points
onsidered.

The relationship between the response (p(SOCave > 0.60))

nd design parameters (Pcellmax, τ, Ebackup) are found using
initab. The model obtained through Minitab analysis has a
− Sq = 98.9% and R − Sq(adj) = 97% which means that

7% of the variations in the data can be explained by the

Fig. 8. Actual response vs. fitted data.
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Fig. 9. Pcellmax vs. Ebackup for a fixed τ.

odel. The plot of response versus fitted values is given in
ig. 8.

Minitab also provides contour plots to visualize the relation-
hips. The contour plots provides visual reference about the
ffect of two design parameters on the response variable while
ne of the design parameters is kept constant. The relationship
etween Ebackup and Pcellmax for a fixed time constant is shown
n Fig. 9.

The curves in Fig. 9 show different probability lines to meet
he load demand. Failure to meet load demand probabilities can
lso be obtained from these curves as a function of both Pcellmax
ndEbackup. As an example, a point chosen from 92% probability
ine means at least 92% of the time (out of 1000 simulated cases)
OCave will be bigger than 60%. Hourly simulation results are
sed to decide whether the selection criteria is satisfied or not.
he criteria to meet the load demand defined as the probability
f average state of the charge staying bigger than 60% for each
igh load hours. The failure to meet demand probabilities can be
btained by subtracting the probability of meeting the demand
alues from 100%. When a point from 92% probability line is
hosen, then corresponding Pcellmax and Ebackup values will 8%
f the time fail to meet demand.

The sizing curves in Fig. 9 can also be used for tradeoff anal-
sis in cost saving versus penalty since they provide information
bout both costs (indirectly) and failure probability. As an exam-
le, although point 1 has a lower system cost compared to point
, it has higher failure probability compared to point 2.

This plot is used to select fuel cell system power (Pcellmax)
nd backup size (Ebackup) for points 1–9 shown in Fig. 9. Points
, 4, and 7 are selected from 72% probability line; points 2, 5,
nd 8 are selected from 82% probability line; and points 3, 6,
nd 9 are selected from 92% probability line. Corresponding
cellmax and Ebackup values for each point are given in Table 2.

Once sizes are selected for each point using the sizin curves
n Fig. 9, system simulations are run for validation purposes with
50 new scenarios obtained using the TB. Obtained probability
alues are summarized in Fig. 10. As can be seen, the probability
o meet the load demand criteria is satisfied for all chosen points.

Failure to meet load demand probabilities for different

ackup sizes using the results of simulated cases for points 1–9
re shown in Fig. 11.

It should be noted that the selected Pcellmax and Ebackup val-
es are only a starting point and might not satisfy the selection
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Table 2
Pcellmax and Ebackup values for the selected points shown in Fig. 9

Points 1 2 3 4 5 6 7 8 9

Pcellmax (W) 1,533 1,647 1,794 1,594
Ebackup (J) 800,000 800,000 800,000 600,000
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ig. 10. Obtained probabilities to meet the load demand (p(SOCave > 0.60))
or the selected points (1–9) through simulations.

riteria. Since the problem is stochastic in nature, the results
btained will not be the exact answer. The results from the DOE
an be used as a starting point for a final solution. The DOE
educes the search space for the solution since the analysis gives
s an estimate of where the solution could be for different design
arameters. Then, a more refined local search can be used to
each a final solution.

.2. Comparison with a worst case scenario sizing
In order to compare the results of the sizing method intro-
uced here with the worst case sizing, a possible worst case
or the considered house is obtained by superimposing the indi-

ig. 11. Probability of failure to meet demand vs. Pcellmax for different backup
izes using the results of simulated cases for points 1–9.

f
o
r
m
a
a
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F

1,715 1,857 1,666 1,782 1,936
600,000 600,000 400,000 400,000 400,000

idual appliance profiles. The considered appliances, that are
ommonly seen in a residential house, are

Oven and oven-top
Microwave
TV
Living room lights
Garage door opener
Refrigerator
Vacuum cleaner
Dryer
Washing machine
Toaster
Dishwasher

Each appliances current and voltage waveforms are mea-
ured experimentally using the DL 750. The rms values of
oth current and voltage waveforms are used to calculate power
equirements. The dishwasher cycle was the longest among all
he appliances. Therefore, its running time is considered as the
topping time. The superimposed load profile is shown in Fig. 12.

During the first minutes of the cycle, the power require-
ent is quite high since all the appliances mentioned above are

eing used. However, the power requirement goes down as time
rogress since some of the appliances are off one by one. For
xample, the refrigerator is on with its periodic on and off times
or the duration of the cycle while the garage door opener is
perating only once at the beginning of the cycle. TV and living
oom lights are on for the duration of the cycle as well. Washing

achine and dryer are used for one loading. Microwave is oper-

ted to heat up a dinner plate while vacuum cleaner and toaster
re operated approximately 5 min. Oven was on for the duration
f the cycle while oven-top was on for half of the cycle.

ig. 12. A possible worst case loading scenario for the considered house.
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Table 3
Comparison of the required energy backup values for the worst case sizing and
the proposed sizing method for selected points 1–9

Points Pcellmax (kW) Proposed method
Ebackup (kWh)

Worst case
Ebackup (kWh)

1 1532 0.222 2.972
2 1647 0.222 2.861
3 1794 0.222 2.694
4 1594 0.167 2.916
5 1715 0.167 2.777
6 1857 0.167 2.638
7 1666 0.111 2.833
8
9
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1782 0.111 2.722
1936 0.111 2.527

The required energy backup for this worst loading case is cal-
ulated using the obtained worst case load profile as the input
o our system simulation. For the same parameter values of
elected points (Table 2), the required backup values to keep
he SOCaveabove 60% are given in Table 3.

The results confirm our expectation that the worst case sce-
ario sizing is dramatically oversizing the required backup for
iven fuel cell parameters. They also confirm the importance of
oth fuel cell systems dynamics and load dynamics in stand-
lone power systems sizing.

. Conclusions

A stand-alone residential fuel cell power system sizing is
nvestigated in this study. A stochastic sizing methodology is
ntroduced. Both load dynamics and fuel cell system dynam-
cs are considered, as has not been done in the literature. The
oad side dynamics are captured in detail experimentally. The

easured data, then, are used as basis for the Threshold Boot-
trap to produce many realistic load profiles for a systematic
izing study. When the dynamics are considered, the required
ackup size is considerably reduced compared to typical worst
ase scenario sizing.

Since the sizing problem is stochastic in nature, the results
btained here will not be the exact answer. The methodology
sed cannot guarantee 100% coverage since it is impossible to do
o. The randomness of the data profile and the path dependence
f the sizing problem make it difficult to generalize the sizing
ethodology. However, the results from the DOE can be used as
starting point for a sizing solution. The DOE reduces the search
pace for the solution since the analysis gives us an estimate
f where the solution could be for different design parameters.
hen, a more refined local search can be used to find the final
olution.

The sizing methodology given in this study could be used
y setting other reliability standards, such as minimizing the
otal time of failure to meet the demand, for example 5 min total
ime of failure to meet demand out of 24 h. Total time of failure

an be determined using the backup state of the charge. The
uration that the state of the charge staying lower than a user-
elected lower limit, such as 30% will provide the failure time.
he summation of these durations will provide the total time of

[

[

wer Sources 171 (2007) 802–810 809

ailure. Then, the total time of failure or its probability can be
sed as response variable in the DOE analysis and new sizing
urves can be obtained.

Since 100% coverage cannot be guaranteed in the stand-alone
peration without an overdesign as in the worst case scenario
izing, a load management algorithm to prevent a failure (no
lectricity) should be implemented in such a way that if the load
s already at the limit of the system, the user could not start any
ther appliance or some of the loads could be taken out from
he system. The requested demand could be satisfied at a later
ime. These preventive measures could be easily integrated into
ld buildings as well.

Cost is not considered in this study since the size and the cost
elationship is linear in the stand-alone operation. The total cost
f the system is the combination of both fuel cell system cost
nd backup energy source cost. Thus, any decrease in either fuel
ell system size or backup size will lower the total cost. Under
resent economics, the fuel cell system is the most expensive
art in overall system cost.

The sizing methodology given here can be used together
ith sophisticated demand analysis programs to compute a cus-

omized sizing for each user as the renewable energy sources
ecomes more affordable and more modular in the future.
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10 U.S. Selamoǧulları et al. / Journal

16] A.M. Azmy, I. Erlich, IEEE Power Tech Conference Proceedings, vol. 2,
June 2003.

17] F. Galiardi, S. Iannuzzi, M. Pagano, L. Piegari, IEEE Bologna PowerTech
Conference, June 2003.

18] J.P. Bird, Model of the air system transients in a fuel cell vehicle, Master
Thesis, Virginia Tech University, Blacksburg, VA, USA, 2002.
19] D.L. Skidmore, Simplification of a fuel cell system through single setpoint
control, Master Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA,
2005.

20] J.T. Pukrushpan, Modeling and control of fuel cell systems and fuel pro-
cessor systems, Ph.D. Thesis, Univerisity of Michigan, January 2003.

[

[

wer Sources 171 (2007) 802–810

21] J.-H. Wee, Renewable Sustain. Energy Rev. 11 (8) (2007) 1720–
1738.

22] S. Lux, M. Binder, F. Holcomb, N. Josefik, Fuel Cells Bull. 2003 (October
(10)) (2003) 11–15.

23] P. Britz, N. Zartenar, Fuel Cells 4 (4) (2004) 269–275.
24] Y. Hamada, M. Nakamura, H. Kubota, K. Ochifuji, M. Murase, R.
Goto, Renewable Sustain. Energy Rev. 9 (August (4)) (2005) 345–
362.

25] A. Folkesson, C. Andersson, P. Alvfors, M. Alakla, L. Overgaard, J. Power
Sources 118 (May (1–2)) (2003) 349–357.

26] Yokogawa DL 750 User Manual.


	A systems approach for sizing a stand-alone residential PEMFC power system
	Introduction
	Residential load modeling
	Dynamic fuel cell system model
	Stochastic sizing methodology for the stand-alone residential fuel cell power system
	Results
	Comparison with a worst case scenario sizing

	Conclusions
	Acknowledgment
	References


